Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
São Paulo; s.n; s.n; 2022. 263 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1379332

ABSTRACT

Os ribossomos são complexos ribonucleoproteicos conservados formados por duas subunidades assimétricas (40S e 60S em eucariotos) responsáveis pela tradução da informação genética e catálise da síntese proteica. A montagem destes complexos em eucariotos é mais bem descrita em S. cerevisiae, constituindo um processo celular energeticamente dispendioso e com múltiplas etapas. Ela tem origem no nucléolo com a transcrição do pré-rRNA 35S e requer o recrutamento hierárquico e transiente de cerca de 200 fatores de montagem para garantir a formação correta dos centros funcionais aptos à tradução. Neste processo, que se estende no núcleo e citoplasma, 79 proteínas ribossomais associam-se gradativamente à medida que o prérRNA é dobrado, modificado e processado. O processamento do pré-rRNA 35S consiste na remoção progressiva de espaçadores internos (ITS1 e ITS2) e externos (5ETS e 3ETS), que separam e flanqueiam os rRNAs maduros componentes de ambas subunidades ribossomais. A clivagem do ITS1 separa as vias de maturação do pré-60S e do pré-40S. O ITS2, que, em associação a fatores de montagem, forma uma estrutura denominada ITS2-foot, é o último espaçador do pré-60S a ser removido. A composição do ITS2-foot permanece inalterada no nucléolo até a transição entre o estado E nucleolar e a formação da partícula Nog2 nuclear. Nesta etapa, a liberação do fator Erb1 permite o recrutamento do fator de montagem conservado e essencial Nop53. Na base do ITS2-foot, Nop53 recruta o exossomo via RNA helicase Mtr4 para a clivagem 3-5 exonucleolítica de parte do ITS2 levando à desmontagem do ITS2-foot. O fato de Nop53 atuar como ponte entre dois grandes complexos e apresentar uma estrutura flexível e estendida nos levou a aprofundar a caracterização de seu papel durante a maturação do pré60S. Neste trabalho, usando análise proteômica quantitativa label-free baseada em espectrometria de massas, caracterizou-se o interactoma de Nop53, e avaliou-se o impacto da depleção de Nop53 no interactoma da subunidade catalítica do exossomo Rrp6 e na composição de pré-ribossomos representativos de quase todas as etapas de maturação do pré-60S. Em paralelo, foram caracterizados mutantes truncados de Nop53 e avaliada por pull-down a interação de Nop53 com componentes do exossomo. Os resultados obtidos mostraram que Nop53 é capaz de interagir com o cofator do exossomo Mpp6, sugerindo pontos adicionais de interação durante o recrutamento do exossomo ao pré-60S. A análise do interactoma de Rrp6 mostrou uma associação precoce do exossomo aos intermediários pré-ribossomais nucleolares mais iniciais, anteriores aos previamente descritos. Mudanças na composição dos intermediários pré-60S revelaram que a depleção de Nop53 afeta a transição entre o estado E e a partícula Nog2, afetando eventos tardios de maturação como o recrutamento de Yvh1. Comparando-se o efeito da depleção de Nop53 com o de mutantes nop53 desprovidos da região de recrutamento do exossomo, obtivemos evidências bioquímicas do papel estrutural de Nop53 na base do ITS2- foot. Em conjunto, estas observações, à luz de estruturas de intermediários pré-ribossomais recentemente descritas, nos permitiram concluir que o recrutamento de Nop53 ao pré-60S contribui para a estabilização de eventos de remodelamento do rRNA que antecedem a formação da partícula Nog2


Ribosomes are conserved ribonucleoprotein complexes formed by two asymmetric subunits (the 40S and the 60S in eukaryotes) responsible for translating the genetic information and catalyzing protein synthesis. The assembly of these complexes in eukaryotes is best described in S. cerevisiae. It is an energetically demanding, multi-step cellular process, that starts in the nucleolus with the transcription of the 35S pre-rRNA. It requires the hierarchical and transient recruitment of about 200 assembly factors to ensure the correct formation of the functional centers suitable for translation. In this process, which extends into the nucleus and cytoplasm, 79 ribosomal proteins gradually associate as the pre-rRNA is folded, modified, and processed. The 35S pre-rRNA processing happens with the progressive removal of internal (ITS1 and ITS2) and external (5'ETS and 3'ETS) transcribed spacers, which separate and flank the mature rRNA components of both ribosomal subunits. The cleavage at the ITS1 separates the pre-60S and pre40S maturation pathways. The ITS2, which in association with assembly factors constitutes a structure called ITS2-foot, is the last pre-60S spacer to be removed. The composition of the ITS2- foot remains unchanged in the nucleolus until the transition between the nucleolar state E and the nuclear Nog2 particle. At this stage, the release of Erb1 allows the recruitment of the conserved and essential assembly factor Nop53. At the base of the ITS2-foot, Nop53 recruits the exosome via the RNA helicase Mtr4 for the ITS2 3'-5' exonucleolytic cleavage leading to the ITS2-foot disassembly. The fact that Nop53 acts as a bridge between these two large complexes and exhibits a flexible and extended structure led us to further characterize its role in the pre-60S maturation. In this work, using mass spectrometry-based label-free quantitative proteomics, we characterized the interactome of Nop53, as well as the impact of the depletion of Nop53 on the interactome of the exosome catalytic subunit Rrp6 and on the composition of pre-ribosomes representative of almost all pre-60S maturation stages. In parallel, we characterized nop53 truncated mutants and evaluated the interaction of Nop53 with exosome components by pulldown assays. The results showed that Nop53 can interact with the exosome cofactor Mpp6, suggesting the contribution of additional points of interaction during the exosome recruitment to the pre-60S. The analysis of the Rrp6 interactome revealed an early association of the exosome with pre-ribosomal intermediates at very early nucleolar stages, before those previously described. Changes in the composition of pre-60S intermediates revealed that Nop53 depletion affects the transition between the state E and the Nog2 particle, affecting late pre-60S maturation events, such as the Yvh1 recruitment. Comparing the effect of Nop53 depletion with that of nop53 mutants lacking the exosome interacting region, we obtained biochemical evidence of the structural role of Nop53 at the base of the ITS2-foot. Altogether, and in light of recently described structures of pre-ribosomal intermediates, these observations allowed us to conclude that the recruitment of Nop53 to the pre-60S contributes to the stabilization of rRNA remodeling events that precede the formation of the Nog2 particle


Subject(s)
Saccharomyces cerevisiae/classification , Ribosome Subunits/chemistry , Ribonucleoproteins , Ribosomal Proteins , Mass Spectrometry/methods , Cell Nucleolus , Ribosome Subunits, Large , Eukaryota
2.
São Paulo; s.n; s.n; 2020. 133 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1292693

ABSTRACT

A regulação da fosforilação/desfosforilação das proteínas é o eixo central de muitas cascatas de sinalização. A fosfatase DUSP3, constituída apenas por um único domínio catalítico, desempenha papéis fundamentais na proliferação e senescência celular. Nas células HeLa, submetidas ao estresse genotóxico, o DUSP3 interage fisicamente com as proteínas HNRNPC, mas o efeito dessa função molecular ainda é desconhecido. Aqui demostramos que a ausência de DUPS3 mantem a proteína HNRNPC1/C2 num estado hiperfosforilado. Para entender melhor o envolvimento da interação DUSP3-HNRNPC nas funções biológicas da HNRNPC1/C2, foram estudadas células de fibroblasto deficientes de DUSP3. Foi analisado o efeito da deficiência de DUSP3 na biogênese dos ribossomos através do ensaio de perfil de polirribossomos e quantificação dos rRNAs com RT-qPCR. Os resultados mostraram que a deficiência de DUSP3 não afeta a maturação das subunidades ribossômicas, mas teria um impacto na transcrição dos pré-rRNAs e no acumulo das espécies 47S/45S. A expressado de genes contendo sequencias IRES foi analisado através do RT-qPCR e sua tradução ao longo do ciclo e em condições de estresse. Da expressão, não existe nenhuma diferença nos níveis de transcrição dos genes c-myc e xiap nas células normais e deficientes de DUSP3 em condições basais. Embora a síntese destas proteínas é maior nas células deficientes, mantendo um nível maior de tradução ao longo de todo o ciclo. Sob condições de estresse, esta duas proteínas sempre mantem uma maior expressão nas células Knockdown para DUSP3. Neste trabalho também foi estabelecido a presença de DUSP3 nos complexos da subunidade 40S, através do analise das frações obtidas do ensaio de polirribossomos e interação in vitro (Co-IP). A presença de DUSP3 nas subunidades 40S, os monossomas 80S e polissomos poderia ser através da interação direta com proteínas que possuem um domínio RRM e seria dependente dos complexos formados pelas proteínas e seus RNAs alvos. Aqui mostramos a interação in vitro de DUSP3 com a proteína PABP (com quatro domínios RRM), proteína que tem um papel importante na manutenção da taxa global de tradução, esta interação é enfraquecida na ausência de RNAs. A deficiência de DUSP3 também teria um impacto na interação das proteínas HNRNPC1/C2 e P53 in vitro. A ausência de DUSP3 diminui a interação HNRNPC-P53 através da hiperfosforilação da proteina HNRNPC1/C2. A perda desta interação, aumentaria os níveis da proteína P53 na célula deficiente de DUSP3 e poderia gerar parada no ciclo celular. Através de ensaios de imunofluorescência, se observo uma maior taxa de transcrição global na célula deficiente de DUSP3. Por fim, aqui demostramos que a interação direta de DUSP3 e HNRNPC1/C2 vai permitir a regulação das funções biológicas desta proteína, e a ausência de DUSP3 vai ter efeitos pleiotrópicos na homeostase da célula


inglêsProtein phosphorylation/dephosphorylation regulation is a central axis of many signaling cascades. DUSP3 phosphatase, consisting only of a single catalytic domain, plays key roles in cell proliferation and senescence. In HeLa cells subjected to genotoxic stress, DUSP3 physically interacts with HNRNPC proteins, but the effect of this molecular function is still unknown. Here we demonstrate that the absence of DUPS3 keeps the HNRNPC1/C2 proteins in a hyperphosphorylated state. To better understand the involvement of DUSP3- HNRNPC interaction on the biological functions of HNRNPC1/C2, DUSP3 deficient fibroblast cells were studied. The effect of DUSP3 deficiency on ribosome biogenesis was analyzed by polyribosome profile assay and RT-qPCR for rRNA quantification. The results showed that DUSP3 deficiency does not affect ribosomal subunit maturation, but would have an impact on transcription of pre-rRNAs and accumulation of 47S / 45S species. The expression of genes containing IRES sequences was analyzed by RT-qPCR and their translation throughout the cycle and under stress conditions. From expression, there is no difference in transcriptional levels of c-myc and xiap genes in normal and DUSP3 deficient cells under basal conditions. Although, the synthesis of these proteins is higher in deficient cells and these maintain a higher level of translation throughout the cell cycle. Under stress conditions, these two proteins always maintain higher expression in Knockdown cells for DUSP3. In this work, the presence of DUSP3 in the 40S ribosomal subunit complexes was also established by analyzing the fractions obtained from the polyribosome assay and in vitro interaction (CoIP). The presence of DUSP3 in the 40S subunits, 80S monosomes and polysomes could be through direct interaction with proteins that have an RRM domain and would be dependent on the complexes formed by the proteins and their target RNAs. Here we show the in vitro interaction of DUSP3 with PABP protein (with four RRM domains), a protein that plays an important role in maintaining the overall translation rate, this interaction is weakened in the absence of RNAs. DUSP3 deficiency would also have an impact on the interaction of HNRNPC1/C2 and P53 proteins in vitro. The absence of DUSP3 decreases HNRNPC-P53 interaction through hyperphosphorylation of the HNRNPC1/C2 proteins. Loss of this interaction would increase P53 protein levels in the DUSP3 deficient cell and could lead to cell cycle arrest. Through immunofluorescence assays, a higher overall transcription rate is observed in the DUSP3 deficient cell. Finally, we demonstrate that the direct interaction of DUSP3 and HNRNPC1/C2 will allow the regulation of the biological functions of this protein, and the absence of DUSP3 will have pleiotropic effects on cell homeostasis


Subject(s)
DNA Damage , Cell Cycle , Cells , Genes, myc , Origin of Life , Maintenance , Phosphorylation , Polyribosomes , Cell Cycle Checkpoints , Fibroblasts , Homeostasis
3.
Chinese Journal of Tissue Engineering Research ; (53): 4383-4388, 2020.
Article in Chinese | WPRIM | ID: wpr-847380

ABSTRACT

BACKGROUND: Research evidence shows that skeletal muscle contractile activity can induce ribosomal biogenesis, which plays an important role in the control of skeletal muscle mass. OBJECTIVE: To review the main mechanism of ribosome biogenesis in skeletal muscle hypertrophy, upstream regulatory signals of ribosomal biogenesis in skeletal muscle, and effect of exercise on ribosomal biogenesis, and to explore the ribosome biogenesis mechanism of exercise-induced skeletal muscle hypertrophy. METHODS: Relevant studies about exercise, skeletal muscle hypertrophy and ribosome biogenesis in CNKI, Wanfang, and PubMed databases were searched. The key words were “exercise, resistance training, skeletal muscle hypertrophy, protein synthesis, ribosome biogenesis” in English and Chinese. Relevant literatures published from 1999 to 2019 were searched and screened according to inclusion and exclusion criteria. RESULTS AND CONCLUSION: (1) Ribosome biogenesis as a main source of translational capacity plays an important role in muscle growth. (2) A single bout of resistance exercise can promote the ribosome biogenesis. However, cumulative bouts of resistance exercise eventually lead to the accumulation of mature rRNAs, leading to increased concentration of total RNA, which promote the growth of skeletal muscle. (3) Ribosome biogenesis may be the key molecular mechanism for the regulation of skeletal muscle hypertrophy induced by resistance training. (4) Moderate-volume resistance training led to adaptations to resistance training. This hypertrophy was associated with volume-dependent regulation of total RNA. This suggests that ribosomal biogenesis regulates the dose-effect relationship between training volume and muscle hypertrophy.

4.
Protein & Cell ; (12): 187-200, 2016.
Article in English | WPRIM | ID: wpr-757153

ABSTRACT

The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.


Subject(s)
Humans , Crystallography, X-Ray , GTP Phosphohydrolases , Chemistry , Metabolism , Protein Domains , Ribosome Subunits, Large, Eukaryotic , Chemistry , Metabolism , Saccharomyces cerevisiae , Chemistry , Metabolism , Saccharomyces cerevisiae Proteins , Chemistry , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL